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Conservation laws with source terms often have steady states in which the flux
gradients are nonzero but exactly balanced by source terms. Many numerical meth-
ods (e.g., fractional step methods) have difficulty preserving such steady states and
cannot accurately calculate small perturbations of such states. Here a variant of the
wave-propagation algorithm is developed which addresses this problem by intro-
ducing a Riemann problem in the center of each grid cell whose flux difference
exactly cancels the source term. This leads to modified Riemann problems at the
cell edges in which the jump now corresponds to perturbations from the steady state.
Computing waves and limiters based on the solution to these Riemann problems
gives high-resolution results. The 1D and 2D shallow water equations for flow over
arbitrary bottom topography are used as an example, though the ideas apply to
many other systems. The method is easily implemented in the software package
CLAWPACK. c© 1998 Academic Press
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1. INTRODUCTION

We consider the conservation law

qt + f (q)x = ψ(q, x) (1)

and its multidimensional analogue, wheref is the flux function andψ(q, x) is a source
term (which could depend oft as well). For the homogeneous conservation law (with
ψ ≡ 0), many high-resolution numerical methods have been developed that are second-
order accurate on smooth solutions and which give sharp resolution of discontinuities in
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the solution such as shock waves. See, for example, [6, 13, 16, 24] for general discussions
of such methods.

Here we are particularly concerned with the wave-propagation algorithms developed in
[17], Godunov-type finite-volume methods in which Riemann problems are solved at cell
interfaces to properly resolve the wave structure. These waves are used both for making the
first-order Godunov update and for implementing second-order correction terms, typically
with the application of limiters to suppress oscillations. In multidimensional problems, a
transverse splitting of the waves is also used to improve stability and resolution.

For equations with source terms, the simplest approach is to use a fractional step splitting
method, in which one alternates between solving the homogeneous conservation law

qt + f (q)x = 0 (2)

and the ordinary differential equation

qt = ψ(q, x) (3)

in each time step, avoiding the necessity of incorporating source terms into the high-
resolution method. For many problems this approach is quite successful. For some types
of problems, however, fractional step methods perform quite poorly. In particular, this is
true for problems whereqt is small relative tof (q)x andψ , so that the solution is close
to a steady state in which the flux gradientf (q)x and the source termψ should exactly
balance. Accurate solution of such steady states, and of time-dependent dynamical pertur-
bations (quasi-steady solutions), relies on the numerical method respecting this delicate
balance. Fractional step methods can easily fail since solving (2) may lead to large changes
in the solution which should then be exactly undone by solving (3). It is unlikely that this
will happen exactly, especially since very different sorts of numerical methods are used
in the two steps. Even if there were exact cancellation for a steady state, small dynamical
perturbations can easily be reduced to noise in the process of making these changes and
counterchanges which may be orders of magnitude larger than the perturbation of interest.

In this paper an approach is developed which allows the source term to be easily incor-
porated into the wave-propagation algorithm, avoiding fractional steps. This allows small
perturbations in quasi-steady problems to be computed with the same high resolution as
would be expected if calculating small perturbations about a constant state with the homo-
geneous equation. With this approach the Riemann solvers and limiters are, in essence,
applied directly to the perturbations. This approach will be called thequasi-steady wave-
propagation algorithm, and is developed here in both one and two space dimensions in the
context of the shallow water equations.

Overview. Godunov’s method and the wave-propagation algorithm of [17] are based on
viewing the finite-volume cell average in each time step as defining a piecewise constant
function with constant valueQi in thei th grid cell. Solving theRiemann problembetween
Qi−1 andQi at a cell interface gives a set of waves which affect both of the cell averages
over the next time step. This is described briefly in Section 2, but familiarity with [17] is
assumed.

The basic idea explored here is to introduce a new discontinuity in the center of each grid
cell at the start of each time step, with valueQ−i on the left half of the cell andQ+i on the
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right half. These values are chosen so that

1

2
(Q−i + Q+i ) = Qi (4)

and also, if possible, that

f (Q+i )− f (Q−i ) = ψ(Qi , xi )1x. (5)

The condition (4) guarantees that the cell average is unchanged by the modification, while
(5), if satisfied, means that the waves resulting from solving the Riemann problem at this new
discontinuity will exactly cancel the effect of the source term in this cell. See Section 2 for
further discussion of this. Hence it is not necessary to solve this newly introduced Riemann
problem or deal with the resulting waves in the algorithm, nor is it necessary to apply the
source term any longer. By ignoring both, we respect the steady state balance inherent in
the equations. (Note that (5) is a discrete version off (q)x =ψ .)

We must still solve Riemann problems at the cell interfaces, but these are now between
modified statesQ+i−1 andQ−i rather than betweenQi−1 andQi (see Fig. 2). If the solution is
quasi-steady thenQ+i−1≈ Q−i (whereasQi−1 andQi might have had a large jump between
them if the steady state solution has rapid spatial variation, leading to “strong” waves in
the Riemann solution). By solving the Riemann problem betweenQ+i−1 and Q−i we are
working directly with the perturbations from steady state, as desired. The resulting “weak”
waves modify the cell averages by small amounts corresponding directly to the dynamic
perturbations, rather than making larger changes based on strong waves which must later be
undone by the source terms. Moreover, the second-order correction terms are also computed
directly from these weak waves, and limiters are applied directly to these waves. By contrast,
in a fractional step approach the limiters are applied to the strong waves coming from the
original data, and if these are rapidly varying then the limiting procedure can lead to a
complete corruption of the small amplitude perturbations of interest.

This approach is described more formally and in greater detail starting in Section 2. The
relation of this approach to other methods commonly used to handle such problems without
splitting the equations is explored in Section 4.

Applications. Quasi-steady problems arise in many applications. Some examples in-
clude:

• Shallow water equations with source terms arising from bottom topography, e.g.,
flow in a one-dimensional channel with an irregular bottom. Many practical problems
involving the two-dimensional shallow water equations in oceanography or atmospheric
science require the inclusion of bottom topography.
• Gas dynamics with geometrical source terms, such as the quasi-one-dimensional

nozzle.
• Fluid dynamics with gravity, either a constant gravitational field, as in atmospheric

problems, or self-gravity, as in modeling stellar dynamics, for example. Often it is of interest
to model perturbations which are small relative to the underlying variations in density and
pressure arising from the gravitational force.

An example of this approach for the one-dimensional isothermal Euler equations in a
gravitational field was given in [19]. More extensive tests are currently underway for the full
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multidimensional Euler equations in the presence of gravity, and some preliminary results
are reported in [18].

In this paper the shallow water equations (in one and two dimensions) will be used as
an example. The shallow water equations have the advantage of being a relatively simple
system where the ideas are easy to explain and interpret physically. With this example it is
also possible to put in any reasonable bottom topography and have a physically meaningful
test problem, which is not the case with gravitational source terms, for example, where
only certain forms of the source term make sense. Hence the approach can be subjected
to a wider variety of tests. The shallow water equations with bottom topography are also
extremely important in their own right.

2. GODUNOV’S METHOD

Let Qi ≡ Qn
i denote cell averages at timetn and let Q̄i ≡ Qn+1

i be the updated cell
averages at timetn+1. (We suppress superscripts since all the methods discussed are one-
step methods and other superscripts will be needed below.) Godunov’s method for the
homogeneous conservation law (2) is derived by viewing the data at timetn as defining a
piecewise constant function with valueQi in thei th cell and jump discontinuities at the cell
interfacesxi−1/2, as shown in Fig. 1a. Solving the Riemann problems at the interfaces gives
rise to waves propagating in thex-t plane, as indicated in Fig. 1b. IfQ∗i−1/2 denotes the
value of the Riemann solution along the interfacexi−1/2 for t > tn, then Godunov’s method
can be written as

Q̄i = Qi − 1t

1x
( f (Q∗i+1/2)− f (Q∗i−1/2))

= Qi − 1t

1x
(A+1Qi−1/2+A−1Qi+1/2),

(6)

where the notation of [17] is used for flux differences,

A+1Qi−1/2 = f (Qi )− f (Q∗i−1/2)

A−1Qi+1/2 = f (Q∗i+1/2)− f (Qi ).
(7)

Note, however, that the notation of [17] has been modified here to usei − 1/2 as the index
for the interface between cellsi − 1 andi (rather than usingi for this index). In this paper
it will be important to make distinctions between edge values and cell-centered values.

FIG. 1. (a) Data in two adjacent grid cells, viewed as defining a piecewise constant function for Godunov’s
method. (b) Structure of the solution to the resulting Riemann problems, as seen in thex-t plane.
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Solving the Riemann problem atxi−1/2 gives a flux difference splitting

f (Qi )− f (Qi−1) = A−1Qi−1/2+A+1Qi−1/2. (8)

The right-going portionA+1Qi−1/2 modifies the cell averageQi while the left-going
portionA−1Qi−1/2 modifies the cell averageQi−1.

Often this splitting is accomplished by decomposing the jumpQi − Qi−1 into a set
of wavesW p

i−1/2 propagating with speedsλp
i−1/2, for p= 1, 2, . . . ,Mw, whereMw is the

number of waves (typically equal to the dimension of the system). Then we have

Qi − Qi−1 =
Mw∑
p=1

W p
i−1/2, (9)

while the Rankine–Hugoniot condition across each wave results in

f (Qi )− f (Qi−1) =
Mw∑
p=1

λ
p
i−1/2W

p
i−1/2.

The simplest example is a constant-coefficient linear system,f (q)= Aq, in which case the
waves are eigenvectors ofA with the wave speeds being the corresponding eigenvalues (see
Section 4). For a nonlinear system such as the shallow water equations, the physical waves
are typically shocks or rarefaction waves, but a Roe linearization [17, 22] is used so that
the waves and speeds are eigenvectors of an average Jacobian matrixAi−1/2 determined by
Qi−1 andQi . The flux-difference splitting is then given by

A−1Qi−1/2 =
Mw∑
p=1

(
λ

p
i−1/2

)−W p
i−1/2

A+1Qi−1/2 =
Mw∑
p=1

(
λ

p
i−1/2

)+W p
i−1/2,

whereλ+ = max(λ, 0), λ− = min(λ, 0). Only this flux-difference splitting is needed for
Godunov’s method, but the individual waves and speeds, coupled with nonlinear limiters,
are used further to define second-order correction terms in the high-resolution methods (see
Section 3).

Modifications for source terms.Now suppose we replace the constant valueQi in Fig. 1
by two valuesQ−i andQ+i with a jump at the cell center, as shown in Fig. 2a. IfQ+i and
Q−i are chosen as

Q−i = Qi − δi

Q+i = Qi + δi

(10)

for some vectorδi , then (4) will be satisfied and total mass will be preserved. If we now
apply the idea of Godunov’s method, advancing forward in time for this piecewise constant
data, we obtain thex-t structure shown in Fig. 2b. In addition to the Riemann problems at
the cell edges, there is a Riemann problem to be solved at the cell center which also leads to a
set of waves. For a sufficiently small time step1t (small enough that the Courant number is
less than 1/2), the waves remain entirely within thei th cell. The cell average is now updated
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FIG. 2. (a) The same data in two adjacent grid cells as in Fig. 1, after introducing a jumpδ in the center of
each grid cell for the quasi-steady method. (b) Structure of the solution to the resulting Riemann problems, as seen
in thex-t plane.

by the incoming waves from each cell edge, as before, and also byall the waves from the
Riemann problem at the cell center, since they all remain in this cell. As a result, we do not
need to actually solve this Riemann problem to split the flux differencef (Q+i ) − f (Q−i )
into left-going and right-going pieces, since both will be used to update the cell average. If
we now denote the flux-difference splitting at the cell interfaces byA+1Q̃i−1/2 (incoming
waves from the left edge, arising from solving the Riemann problem betweenQ+i−1 and
Q−i ) andA−1Q̃i+1/2 (incoming waves from the right edge), then the full update formula
is now

Q̄i = Qi − 1t

1x
(A+1Q̃i−1/2+A−1Q̃i+1/2)− 1t

1x
( f (Q+i )− f (Q−i )). (11)

The tildes onA+1Q̃i−1/2 andA−1Q̃i−1/2 serve as a reminder that the flux-difference
splitting is now based on modified dataQ+i−1 andQ−i .

Now suppose there is a source termψ(q, x) in the equation, giving (1). Then a simple
first-order unsplit method results from taking the Godunov update (11) and also adding in
1tψ(Qi , xi ), the source contribution over time1t . Adding this to (11) results in

Q̄i = Qi − 1t

1x
(A+1Q̃i−1/2+A−1Q̃i+1/2)+1t

[
ψ(Qi , xi )− 1

1x
( f (Q+i )− (Q−i ))

]
.

(12)

If we can chooseδi in (10) so that (5) is satisfied, then the final term here drops out and we
have a method that looks identical to the original Godunov method (6), but with the flux
difference splittingA±1Q̃i−1/2 determined by solving the Riemann problems with data
Q+i−1 andQ−i used rather than the original flux-difference splittingA±1Qi−1/2 based on
Qi−1 andQi .

Although this derivation was based on the assumption that the Courant number is less
than 1/2, in fact the resulting method is stable for Courant numbers up to 1 since the waves
from the cell-centered Riemann problem are eliminated. All of the results presented in
this paper were computed with a Courant number near 0.9.

3. HIGH-RESOLUTION METHODS

Solving the Riemann problem between statesQ+i−1 andQ−i results in a set of wavesW p
i−1/2

propagating at speedsλp
i−1/2, for p= 1, 2, . . . ,Mw. The Godunov method is extended to a
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high-resolution method by adding in correction terms to obtain

Q̄i = Qi − 1t

1x
(A+1Q̃i−1/2+A−1Q̃i+1/2)− 1t

1x
(F̃ i+1/2− F̃ i−1/2),

where

F̃ i−1/2 = 1

2

Mw∑
p=1

∣∣λp
i−1/2

∣∣(1− 1t

1x

∣∣λp
i−1/2

∣∣)W̃i−1/2.

HereW̃i−1/2 is a limited version of the waveW p
i−1/2, obtained by comparingW p

i−1/2 to the
correspondingp-wave at the adjacent Riemann problem in the upwind direction, based on
the sign ofλp

i−1/2. Hence

W̃i−1/2 = limiter
(
W p

i−1/2,W
p
I−1/2

)
,

where

I =
{

i − 1 if λp
i−1/2 > 0

i + 1 if λp
i−1/2 < 0.

See [17] for more details and some specific limiters. (The monotonized-centered (MC)
limiter is used in all examples below.)

These high-resolution corrections are unchanged when source terms are included. But
since the wavesW p

i−1/2 are now calculated based on the modified valuesQ+i−1 and Q−i ,
these corrections have small magnitude. Moreover the limiters are applied directly to these
perturbations from steady state.

4. LINEAR SYSTEMS

First consider the linear hyperoblic system with a (possibly nonlinear) source term,

qt + Aqx = ψ. (13)

We assume thatψ is a smooth function ofq and also thatA is nonsingular (see Section
5.2 for some comments on the case whereA is singular). Then any steady state solution is
smooth and satisfies

qx = A−1ψ, (14)

together with appropriate boundary conditions.
WhenA is nonsingular, the condition (5) can always be satisfied in each grid cell for the

system (13). Given a stateQi we need to findδi so thatQ−i = Qi − δi andQ+i = Qi + δi

satisfy

A(Q+i − Q−i ) = 1xψi ,

whereψi =ψ(Qi , xi ), which leads to

δi = 1x

2
A−1ψi . (15)
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For the linear system, the Riemann problem can be explicitly solved in terms of the
eigenstructure ofA. Let

A = R3R−1,

where3= diag(λp) is the matrix of eigenvectors and

R= [r 1 | r 2 | · · · | r m]

is the matrix of right eigenvectors, soAr p= λpr p. Let λ+ = max(λ, 0), λ− = min(λ, 0),
and set

3± = diag((λp)±),

A± = R3±R−1
(16)

so thatA= A+ + A− gives a splitting ofA into pieces with nonnegative eigenvalues and
pieces with nonpositive eigenvalues, respectively.

For the homogeneous problem withψ ≡ 0, Godunov’s method reduces to

Q̄i = Qi − 1t

1x
(A+(Qi − Qi−1)+ A−(Qi+1− Qi )).

This is simply the upwind method. The wavesW p
i−1/2 are eigenvectors ofA, and if no

limiters are used then the high-resolution correction reduces to

F̃ i−1/2 = 1

2
|A|
(

1− 1t

1x
|A|
)
(Qi − Qi−1)

= 1

2

(
|A| − 1t

1x
A2

)
(Qi − Qi−1),

(17)

where

|A| = A+ − A− = R|3|R−1.

When these corrections are added into the upwind method, we obtain the standard Lax–
Wendroff method.

Now suppose there is a source term and we chooseδi as in (15) so that this source term
is exactly cancelled. Godunov’s method as extended in Section 2 then becomes

Q̄i = Qi − 1t

1x
(A+(Q−i − Q+i−1)+ A−(Q−i+1− Q+i )).

Using Q±i = Qi ± δi in this expression and rearranging terms shows that

Q̄i = Qi − 1t

1x
(A+(Qi − Qi−1)+ A−(Qi+1− Qi ))

+1t (A+A−1ψi−1/2+ A−A−1ψi+1/2), (18)

where

ψi−1/2 = 1

2
(ψi−1+ ψi ).
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Hence, for the linear system, this method is equivalent to applying the upwind method to the
original data but with a first-order approximation to the source term also included. Note that

A+A−1+ A−A−1 = (A+ + A−)A−1 = I ,

so that the final term in (18) does give a consistent approximation to1tψi . This term can
also be interpreted as follows:ψi−1/2 is an approximation to the source term atxi−1/2,
which is split into two piecesA−A−1ψi−1/2 andA+A−1ψi−1/2 (which sum toψi−1/2). The
first piece is used to modifyQi−1 while the latter modifiesQi . This amounts to projecting
ψi−1/2 onto the right-going characteristics to compute the portion updatingQi and onto
the left-going characteristics to compute the portion updatingQi−1. This approach is often
used for source terms (e.g., [1, 2, 20, 23]) even for nonlinear problems, in which case the
eigenstructure of the Roe matrix atxi−1/2 might be used to splitψi−1/2, for example.

The approach suggested here is somewhat different for nonlinear problems, however. In
particular, it yields a simple and effective extension from Godunov’s method to the inclusion
of high-resolution correction terms.

Jenny and M¨uller [10–12] have recently developed an approach for handling source terms
which is also closely related. In their method the source is viewed as being concentrated at the
interface between grid cells. A modified Riemann solver is developed for the Euler equations
which imposes the resulting nonhomogeneous Rankine–Hugoniot jump conditions at the
interface. The resulting waves will have small amplitude if the source term balances most
of the jump in states across the interface. The authors study this in the context of reacting
flow and viscous terms, and also propose using this approach to handle the balance between
fluxes in different directions in multidimensional problems.

Another approach which has been explored in the literature (e.g., [3–5, 25]) is to use
a piecewise linear reconstruction within each grid cell, choosing the slope in such a way
that f (q)x ≈ψ within thei th cell. The approach introduced here is similar, but the source-
balancing slope is now concentrated into a delta function at the center of the cell, and
the resulting jumps at cell interfaces define slopes which can be used for second-order
corrections in the usual manner. Actually we use the jump to define waves, but the wave
decomposition (9), when divided by1x, can also be viewed as a decomposition of the
slope. See [7, 8, 26] for some other related methods.

5. THE SHALLOW WATER EQUATIONS

As an example of how this technique can be applied to nonlinear systems, we consider
the shallow water equations with bottom topography in both one and two dimensions. First
consider flow in a one-dimensional channel with the bottom elevation given byB(x). Let
h(x, t) represent the fluid depth above this bottom, so the top surface is atB(x)+ h(x, t),
and letu(x, t) be the velocity. Then the equations are

ht + (hu)x = 0 (19)

(hu)t +
(

hu2+ 1

2
gh2

)
x

= −ghBx, (20)

whereg is the gravitational constant (g= 1 is used here) andBx = B′(x).
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5.1. The Quasi-Stationary Case

One steady state solution is obtrained by assuming there is no motion(u≡ 0) and the top
surface is flat, soh(x, t)=C− B(x) for some constantC, which will always be taken to
be 1 below. Suppose we wish to compute small perturbations of this steady state.

Let Qi = [hi , (hu)i ] be the state in thei th grid cell. Since there is no source term in
Eq. (19), the momentumhu must be continuous across the new discontinuity introduced at
the cell center. Letmi = (hu)i denote this value. We need only determine the jump inh to
be introduced, so we wish to find a scalar valueδi so that

h±i = hi ± δi (21)

satisfy (
m2

i

/
h+i +

1

2
g(h+i )

2

)
−
(

m2
i

/
h−i +

1

2
g(h−i )

2

)
= −ghi Bx1x, (22)

where we have usedhu2= (hu)2/h. We suppose that the bottom topographyB(x) is spec-
ified as cell edge valuesBi−1/2 and useBi+1/2 − Bi−1/2≡1Bi on the right-hand side in
place ofBx1x. Inserting (21) in (22) and simplifying gives

m2
i

(
1

hi + δi
− 1

hi − δi

)
+ ghi (2δi +1Bi ) = 0. (23)

Clearing the denominator results in a cubic equation forδi , which always has at least one
real root. For the case we are now considering, small perturbations aboutu≡ 0, we will
havemi ≈ 0 and so

δi ≈ −1

2
1Bi .

A simple Newton iteration quickly converges to the appropriate solution of (23) in this case.
Note in particular that if we are simply trying to preserve the steady state numerically,

this approach works perfectly and keeps the top surface flat. Given valuesBi−1/2, take
hi = 1− 1

2(Bi−1/2+ Bi+1/2) andmi = 0 as initial data. Then (23) givesδi =− 1
21Bi so that

h−i = hi − δi = Bi−1/2.

A similar calculation in celli − 1 shows that

h+i−1 = hi−1+ δi−1 = Bi−1/2

also. So the resulting Riemann problem atxi−1/2 has no jump, and this steady state is exactly
preserved. Computationally this has been verified to machine precision. A fractional step
method does not in general preserve this steady state beyond the level of the splitting error.

EXAMPLE 5.1. As bottom topography take

B(x) =
{

0.25(cos(π(x − 0.5)/0.1)+ 1) if |x − 0.5| < 0.1
0 otherwise

(24)
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FIG. 3. Bottom topography and top surface for the one-dimensional shallow water equations of Example 5.1
in the caseε= 0.2. At time t = 0.7 the right-going portion of the pulse has moved past the hump. A magnified
view of this solution is shown in Fig. 4 (bottom right).

on 0< x< 1 with C= 1 andg= 1. This hump has height 0.5, as shown in Fig. 3. The
initial data are the stationary solutionmi ≡ 0 andhi = 1− 1

2(Bi−1/2+ Bi+1/2), with a small
perturbation

hi := hi + ε for 0.1< x < 0.2.

This disturbance splits into two waves which, for smallε, are essentially linear waves propa-
gating at the characteristic speeds±√gh. The left-going wave leaves the domain (zero-order
extrapolation boundary conditions are used [17]) and the right-going wave moves through
the region whereB varies. Figure 4 shows the computed surfacehi + 1

2(Bi−1/2+ Bi+1/2) at
time t = 0.7, compared to a fine grid “exact” solution. Results are shown for bothε= 0.2
andε= 10−3 with both the fractional step method and the approach developed above, using
the high-resolution method with the MC limiter in each case.

The fractional step method does not preserve this steady state and gives perturbations of
the top surface that are of magnitude roughly 10−3 over the region whereB(x) is nonzero.
For ε= 10−3 the disturbance we are attempting to model is of the same magnitude as this
error. In this example the topography is nonzero only over 0.4< x< 0.6, and at the time
shown, the disturbance has passed this region and so can be easily distinguished. At an
earlier time, or in a problem whereH varies everywhere, the wave of interest would be lost
in the noise.

When the disturbance is larger,ε= 0.2, the wave (which now shows nonlinear behavior)
is well above the noise level, but the effect of the bottom topography is still visible.

With the approach developed here, the resolution of the pulse is equally good for both
values ofε and as good as one would expect in the homogeneous caseB(x)≡ 0.

5.2. Quasi-Steady Flow

There are other steady states besides the stationary state withu≡ 0, consisting of steady
flow in which the momentumm is constant inx but nonzero. There are several different
regimes of such flow, depending on the bottom topography and the freestream Froude
number Fr= u/

√
gh (analogous to the Mach number in compressible gas dynamics). See

[9] for a discussion of flow over a ridge, consisting of an isolated hump as in the previous
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FIG. 4. Comparison of computed results for flow over the hump shown in Fig. 3. Results are shown using
the fractional step method (left column) and the quasi-steady wave-propagation method (right column). The water
surface is shown at timet = 0.7 for two values ofε, the initial perturbation of the surface:ε= 10−3 (top) and
ε= 0.2 (bottom). The right-going pulse has moved past the hump and also been partially reflected by the hump,
giving the disturbance seen on the left. The solid curve in each case is a reference solution computed with the
quasi-steady method on a much finer grid.

example. If the freestream Froude number is sufficiently small then the flow is entirely
subcritical(Fr< 1 everywhere), while if the freestream Froude number is sufficiently large
then the flow is entirely supercritical(Fr> 1 everywhere). In both these cases the solution
is smooth and the quasi-steady method proposed here appears to work just as well as for
the stationary steady state.

5.3. Transcritical Flow

For intermediate freestream Froude numbers, the flow can be transcritical with transitions
where Fr passes through 1, and hence one of the eigenvaluesu±√ghof the Jacobian passes
through 0. Referring back to the case of a linear system discussed in Section 4, this would
correspond to a singular matrixA. Note that in this case there exist vectors [q] for which
A[q]= 0, which means the Rankine–Hugoniot conditions can be satisfied with speed 0. It
is only in this singular case that the steady state solution can contain a stationary shock.

Figure 5 shows one such case, in which the freestream Froude number is less than one
but the flow accelerates to a supercritical value over the hump and then decelerates through
a shock wave on the lee side of the ridge. Similar solutions are seen in steady state Euler
calculations of transonic nozzles or airfoils.
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FIG. 5. Transcritical flow over a ridge, where the Froude number passes through 1 and the steady state solution
contains a shock wave. Values are computed with the quasi-steady method after obtaining an initial approximation
with a fractional step method.

Recalling the expression (15) forδi in the case of a linear system, it might be expected that
difficulties can arise in solving for the requiredδi in the transcritical case. The solution shown
in Fig. 5 was computed by starting with impulsive initial datah(x, 0)= 1−B(x) andu≡ 0.3
and marching forward in time. At the time when the shock first forms, nonconvergence of
the Newton iteration was observed when using the quasi-steady method as described above.

Instead of using the quasi-steady method from the start, the fractional step method was
used until after the shock formed and an approximate steady state was reached, at which
point the quasi-steady method could be successfully used without further difficulty (in spite
of the singularity of the Jacobian). It is not surprising that the fractional step approach is
more robust than the quasi-steady approach for data that are not close to steady state.

Once an approximate steady state is reached, the quasi-steady method appears to work
well in many, though not all, transcritical cases. This requires further study, and the trans-
critical case is mentioned here primarily as a caution to potential users of this approach.

5.4. CLAWPACK Implementation

This algorithm is easily implemented in theCLAWPACK software package [14] (which
implements the wave-propagation algorithms) simply by changing the Riemann solver
rp1 to first solve for eachδi and modify the left and right states before solving the
Riemann problem. Riemann solvers for the 1D and 2D shallow water equations and even-
tually other examples are available athttp://www.amath.washington.edu/∼rjl/
clawpack/quasisteady

6. BOUNDARY CONDITIONS

Another advantage of the quasi-steady approach over fractional step methods is the
relative ease with which boundary conditions can be specified. In the examples presented
above,B(x)≡ 0 near the boundaries and standard boundary procedures work fine with
either method.CLAWPACK requires that the user set boundary conditions by extending the
data to a set of ghost cells adjacent to the boundary in each time step. For example ifQ1 is
the leftmost cell then valuesQ0 andQ−1 must be set in each cell so that the method can be
applied everywhere in the physical domain. (The algorithms have a five-point stencil due
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to the wave limiters used.) Nonreflecting outflow boundary conditions are easily achieved
by using zero-order extrapolation, settingQ0 and Q−1 equal toQ1. This ensures that no
waves are generated in solving the Riemann problem at the boundary and in particular that
there are no ingoing waves. A solid wall at this boundary is easily modeled by reflecting the
interior data across the boundary, withh copied directly and the momentumhu negated,

h0 = h1, h−1 = h2, (hu)0 = −(hu)1, (hu)−1 = −(hu)2. (25)

These two types of extension will be called “even extension” and “odd extension,” respec-
tively, below.

6.1. Fractional Step Methods

For a problem where the source terms are nonzero at the boundary, e.g., if the bottom
topography is not flat at the boundary, then there are additional difficulties with fractional
step methods since the boundary conditions imposed when solving the homogeneous con-
servation law must yield exactly the proper change in the solution to be cancelled out when
the source terms are applied. For example, there must be certain incoming waves at the
boundary to balance the source term even in the case of an undisturbed surface or waves
that are entirely outgoing. (See [15] for a discussion of intermediate boundary conditions
for fractional step methods in a different hyperbolic context.) For the fractional step method
on this problem, the following approach was found to work fairly well for nonreflecting
boundary conditions: When extrapolating the depthh to the ghost cellj , the formula

h j = h1+ B1− Bj

is used, forj = 0,−1. This adjusts the depth to account for the difference in cell-centered
topography between the cells in the process of doing the extrapolation.

For solid wall boundaries, the extension (25) seems to work fairly well provided the
bottom topography is extended to the ghost cells by an even extension ofB across the wall.
This results in an odd extension ofBx, which is what is required to maintain the necessary
odd extension of the momentum after source terms are applied.

6.2. The Quasi-Steady Method

With the quasi-steady wave propagation method, boundary conditions can be very natu-
rally imposed after determining the valuesQ±i in each interior cell. For example, to obtain
outflow boundary conditions we can simply copy the valueQ−1 into the ghost cells to the
left of this boundary. Alternatively, one can simply set the waves to zero in solving the
Riemann problem at the boundary in therp1 routine. As in the case with no source terms,
this ensures that there will be no incoming waves at the boundary and should be much more
reliable than special procedures developed for the fractional step method.

Solid wall boundary conditions can be handled by reflecting the modified data in the
obvious way,

h+0 = h−1 , h−0 = h+1 , h+−1 = h−2 , h−−1 = h+2 ,

with a similar reflection and negation ofhu. Both types of boundary conditions have been
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tested and found to work very well, giving results as good as those presented above even
when the topography is varying at the boundary.

7. TWO SPACE DIMENSIONS

In two space dimensions the shallow water equations take the form

ht + (hu)x + (hv)y = 0 (26)

(hu)t +
(

hu2+ 1

2
gh2

)
x

+ (huv)y = −ghBx (27)

(hv)t + (huv)x +
(

hv2+ 1

2
gh2

)
y

= −ghBy. (28)

Again we consider the wave propagation algorithm of [17] on a finite-volume Cartesian
grid, withhi j representing the cell average of the depth on the(i, j ) cell, for example. In the
absence of source terms (B≡ const), the algorithm proceeds by solving a one-dimensional
Riemann problem normal to each interface between grid cells and propagating the resulting
waves into the neighboring cells. In addition to second-order correction terms, which take
exactly the same form as in one dimension, the waves are also split in the orthogonal
direction by solving a “transverse Riemann problem” and influence the adjacent cells in
the orthogonal direction in an upwinded manner. This gives the “corner coupling” needed
for improved stability and full second-order accuracy. Hence two Riemann solversrpn2

(normal to a cell edge) andrpt2 (in the transverse direction) are generally needed, as
described in [17].

In the quasi-steady approach, this algorithm is entirely unchanged when source terms are
added, except that again the states used to solve the Riemann problem normal to each cell
edge are not the original cell averages, but rather modified values obtained by canceling the
source terms.

Consider the interface between cells(i − 1, j ) and(i, j ), for example, where we must
solve a one-dimensional Riemann problem in thex-direction. The equations solved are

ht + (hu)x = 0

(hu)t +
(

hu2+ 1

2
gh2

)
x

= −ghBx (29)

(hv)t + (huv)x = 0. (30)

The first two equations decouple from the third and are just the one-dimensional shallow
water equations with source terms considered in Section 5. The third equation is simply an
advection equation forv, which propagates with speedu.

Each valuehi j is modified as described in Section 5, to obtain

h±i j = hi j ± δx
i j ,

whereδx
i j is the modification needed to cancel the source term−ghBx in the second equation

of (29). We again assume thatB is known at each cell edge and approximateBx1x by
Bi+1/2, j −Bi−1/2, j . The Riemann problem (29) is then solved with dataQ+i−1, j andQ−i j . The
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waves and flux differences resulting from this Riemann problem are used in the standard way.
In particular, in theCLAWPACK implementation, only the Riemann solverrpn2 is modified,
in essentially the same way as the one-dimensional Riemann solverrp1 is changed to
implement the modification of Section 5.

Similarly, in they-direction we solve the Riemann problem

ht + (hv)y = 0

(hu)t + (huv)y = 0

(hv)t +
(

hv2+ 1

2
gh2

)
y

= −ghBy.

(31)

Between cells(i, j − 1) and(i, j ) we insteady solve the homogeneous Riemann problem
with dataQ+i, j−1 andQ−i j where now

h±i j = hi j ± δy
i j

with δy
i j chosen so that

(vh)2i j

(
1

hi j + δy
i j

− 1

hi j − δy
i j

)
+ ghi j

(
2δy

i j + (Bi, j+1/2− Bi, j−1/2)
) = 0,

analogous to (23).

The quasi-stationary case.Again one steady solution consists of motionless water
(u≡ v≡ 0) with a flat surface,h(x, y)= 1− B(x, y). In this case, as in one dimension,
there is a direct balance between the source term in each direction and the corresponding
derivative of the hydrostatic pressure1

2gh2. Note that in two dimensions there are also non-
trivial steady state solutions even in the absence of source terms, with a balance between
thex- andy-fluxes. With source terms, steady states potentially involve the balance of three
terms. The quasi-steady approach should also be useful in this case, especially since the
wave-propagation algorithms with transverse waves already handle the balance between
spatial dimensions quite well, but here we only consider the important quasi-stationary
case. (Note that this case is also of fundamental importance in gravitational problems.)

As in one dimension, we assume thatB is given at cell edges, of which there are now
four. The best numerical approximation toh for the undisturbed surface is then

hi j = 1− 1

4
(Bi−1/2, j + Bi+1/2, j + Bi, j−1/2+ Bi, j+1/2).

Unlike the one-dimensional case, this will not in general be an exact numerical steady state
using the quasi-steady approach. However, this approach has been found to preserve the
steady state better than a fractional step method if the bottom topography varies appreciably.

EXAMPLE 7.1. The two-dimensional hump

B(x, y) = 0.8 exp(−50((x − 0.5)2+ (y− 0.5)2)) (32)
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TABLE I

Deviation from Flatness in Water Surface at Time

t = 0.1 for 2D Shallow Water Equations in the Station-

ary Case, onN × N Grids

N Quasi-steady method Strang splitting

50 1× 10−3 1.4× 10−3

100 2.5× 10−4 5.5× 10−4

200 6.3× 10−5 1.7× 10−4

is used, which has a maximum height of 0.8 at the center of the unit square. The depth is
set toh(x, y)= 1− B(x, y) corresponding to a flat surface, and the initial velocity is zero
so that the surface should remain undisturbed. Table I shows the max-norm ofh− 1+ B
at timet = 0.1 (i.e., the deviation of the surface from flatness) for the quasi-steady method
and the Strang splitting on three different grids.

The quasi-steady method exhibits second-order accuracy, whereas the Strang splitting
appears to give something between first- and second-order accuracy in this case.

Accuracy tests on other problems where a perturbation to the surface is included and a fine-
grid solution is used for comparison have also been performed. These indicate that the quasi-
steady method does remain second-order accurate in general, in the two-dimensional case.

EXAMPLE 7.2. Figure 7 shows an example analogous to the tests done previously in one
dimension. An isolated elliptical shaped hump

B(x, y) = 0.8 exp(−5(x − 0.9)2− 50(y− 0.5)2). (33)

is used in the rectagular domain [0, 2]× [0, 1], as illustrated in Fig. 6.

The surface is initially flat withh= 1− B except for 0.05< x< 0.15, whereh is per-
turbed upward byε= 0.01. Figure 7 shows the right-going portion of the disturbance as
it propagates past the hump, computed with the quasi-steady wave-propagation method
on both a 200× 100 grid and a 600× 300 grid for comparison. Note that the wave speed
is slower above the hump than elsewhere, leading to a distortion of the initially planar
disturbance. Outflow boundary conditions are imposed as described in Section 6, and the
left-going pulse has already cleanly left the domain at the first time shown.

FIG. 6. Elliptical hump used for Example 7.2. The lowest contour level is at 0.01 and the hump has height
0.8.



        

BALANCING SOURCE TERMS AND FLUX GRADIENTS 363

FIG. 7. Two-dimensional shallow water equations, Example 7.2. An initially planar disturbance propagates
past an isolate hump centered at(0.9, 0.5) in the domain [0, 2] × [0, 1]. Computations are made with the quasi-
steady wave-propagation method. Left column: 200× 100 grid. Right column: 600× 300 grid.

8. CONCLUSIONS

The quasi-steady wave-propagation method introduced here allows one to accurately
incorporate source terms into high-resolution Godunov methods for a certain class of prob-
lems. In particular, if the solution is close to a steady state in which the source terms balance
the flux gradient, then this approach results in Riemann solvers and limiters being applied
to small jumps at cell interfaces corresponding to the deviation from steady state, rather
than to larger deviations within the steady state. This results in excellent resolution of the
propagation of small perturbations.

For source-term problems where the solution is far from steady state, this quasi-steady
approach is probably not appropriate. The present method also has some difficulties in the
case of transcritical steady states, where the steady state includes a shock across which the
Jacobian is singular. This is described briefly in Section 5.3, but requires further study.
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The shallow water equations have been used to illustrate this approach, but recent com-
putations by Derek Bale on the two-dimensional Euler equations with a gravitational source
term [18] indicate that the approach is successful there as well. Atmospheric-flow calcula-
tions with small-amplitude waves relative to the gravitional force have also been recently
performed with this code [21]. The quasi-steady approach should be useful in other appli-
cations as well, and the extension to three space dimensions should be direct.
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